Constraint Preserving Integrators for General Nonlinear Higher Index Daes
نویسندگان
چکیده
In the last few years there has been considerable research on numerical methods for diierential algebraic equations (DAEs) f(x 0 ; x; t) = 0 where f x 0 is identically singular. The index provides one measure of the singularity of a DAE. Most of the numerical analysis literature on DAEs to date has dealt with DAEs with indices no larger than three. Even in this case, the systems were often assumed to have a special structure. Recently a numerical method was proposed that could, in principle, be used to integrate general unstructured higher index solvable DAEs. However, that method did not preserve constraints. This paper will discuss a modiication of that approach which can be used to design constraint preserving integrators for general nonlinear higher index DAEs.
منابع مشابه
Unitary partitioning in general constraint preserving DAE integrators
A number of numerical algorithms have been developed for various special classes of DAEs. This paper describes a new variable step size, constraint preserving integrator for general nonlinear fully implicit higher index DAEs. Numerical implementation issues are discussed. Numerical examples illustrate the effectiveness of the new method.
متن کاملConsistent Initial Conditions for Unstructured Higher Index DAEs: A Computational Study
Differential algebraic equations (DAEs) are implicit systems of ordinary differential equations, F (x′, x, t) = 0, for which the Jacobian Fx′ is always singular. DAEs arise in many applications. Significant progress has been made in developing numerical methods for solving DAEs. Determination of consistent initial conditions remains a difficult problem especially for large higher index DAEs. Th...
متن کاملA Uniform Framework for Dae Integrators in Flexible Multibody Dy- Namics
The present talks deals with a uniform approach to the discretization in time of rigid body dynamics, nonlinear structural mechanics and flexible multibody systems. In particular, it is shown that a uniform set of differential-algebraic equations (DAEs) with constant mass matrix governs the motion of rigid bodies and semi-discrete formulations of structural components (such as geometrically exa...
متن کاملLagrange-d’Alembert SPARK Integrators for Nonholonomic Lagrangian Systems
Lagrangian systems with ideal nonholonomic constraints can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from the Lagrange-d’Alembert principle. We define a new nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-d’Alembert principle for forced Lagrangian systems. Nonholonomic constraints are considered a...
متن کاملSequential Regularization Methods for Nonlinear Higher-Index DAEs
Sequential regularization methods relate to a combination of stabilization methods and the usual penalty method for differential equations with algebraic equality constraints. This paper extends an earlier work [SIAM J. Numer. Anal., 33 (1996), pp. 1921–1940] to nonlinear problems and to differential algebraic equations (DAEs) with an index higher than 2. Rather than having one “winning” method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995